Rapid analysis of isotopically unmodified amino acids by high-resolution ^{14}N -edited $^{1}H-^{13}C$ correlation NMR spectroscopy†

Jean-Paul Amoureux,*^{*a*} Qiang Wang,^{*abc*} Bingwen Hu,^{*a*} Olivier Lafon,^{*a*} Julien Trébosc^{*a*} and Feng Deng^{*b*}

Received (in Cambridge, UK) 17th September 2008, Accepted 10th October 2008 First published as an Advance Article on the web 7th November 2008 DOI: 10.1039/b816362f

A ¹⁴N-edited ¹H-¹³C NMR method is described for structural analysis under high-resolution of biomolecules without any enrichment.

Most of nuclear magnetic resonance (NMR) structural analyses of biomolecules, such as proteins or nucleic acids, are currently performed in solution and are mainly based on the determination of contacts between the three most abundant atoms in these compounds: hydrogen, carbon and nitrogen. However, some biological samples (e.g. membrane and fibrous proteins) are not amenable to solution NMR techniques owing to insolubility or unfavorable relaxation properties. In this case, multidimensional solid-state NMR (SS-NMR) provides a good alternative and enables efficient characterization of large protein domains.^{1,2} The current SS-NMR methods require the use of ¹³C, ¹⁵N-enriched samples. To avoid spectral overlap and gain resolution, it is often desirable to selectively observe ¹H/¹³C signals next to ¹⁴N. However, despite its high isotopic abundance (99.6%), ¹⁴N (spin I = 1) NMR spectroscopy has remained a difficult challenge until recently. The main difficulty in observing ¹⁴N arises from the large quadrupole interaction, which results in broad NMR lines for molecules in both liquid and solid states. In solution, the broadening results from very fast quadrupolar relaxation. In solid powder, NMR line-widths of several MHz are observed because of the large first-order quadrupole interaction. The ¹⁴N MAS study of powdered solids has therefore been restricted to samples with quadrupole coupling constants of $C_{\rm O} \sim 1$ MHz or less.^{3–5} Tycko and Opella,⁶ have demonstrated overtone NMR spectroscopy, where spectra are only influenced by the much smaller second-order quadrupole interaction, but the sensitivity is very poor. Recently, renewed interest in ¹⁴N NMR methodology led by Gan⁷ as well as Cavadini et al.8 has yielded a method for the indirect detection

of ¹⁴N by transferring coherence via a combination of scalar J-couplings and residual dipolar splittings (RDS). Using these new experiments it is possible to obtain two-dimensional (2D) spectra where ¹⁴N spectra along the indirect dimension display large shifts from isotropic chemical shift positions and relatively small line-widths on the order of a few kHz. These shifts along with the line broadening are mainly the result of secondorder quadrupolar interaction. More recently, Gan⁹ has shown that the combination (called D-HMQC) of dipolar recoupling and HMOC allows the efficient indirect detection of ¹⁴N using heteronuclear dipolar couplings for the coherence transfers. As the dipolar coupling is much larger than both the J-coupling and RDS, Gan et al. obtained a 2D ¹H-¹⁴N D-HMQC correlation NMR spectrum of an amino acid in just a few minutes.¹⁰ It has also been shown on a L-[U-¹³C] histidine HCl·H₂O sample, that a 3D $^{1}H^{-13}C^{-14}N$ correlation spectrum could also be obtained using ${}^{1}H \rightarrow {}^{13}C$ and ${}^{13}C \rightarrow$ $^{14}N \rightarrow ^{13}C$ coherence transfers *via* the through-space dipolar interaction.¹¹ However, the efficiency of ${}^{13}C \rightarrow {}^{14}N \rightarrow {}^{13}C$ transfer was very weak (4-5%) and the experiment lasted 85 h on a 18.8 T spectrometer. It was recently pointed out¹² that in case of small or medium sized molecules, peak assignment could be extracted from three 2D spectra instead of a much longer 3D experiment: (i) a ¹H-¹⁴N *D*-HMQC spectrum, (ii) a ¹H-¹³C CP-HETCOR spectrum and (iii) a ¹⁴N-edited ¹H-¹³C CP-HETCOR spectrum. ¹⁴N edition allows selecting crosspeaks resulting from ¹³C nuclei in proximity to a nitrogen atom. A method to obtain ¹⁴N-edited ¹H-¹³C spectra has already been proposed with the Saturation-Pulse Induced Dipolar Exchange with Recoupling (SPIDER).¹³ However, SPIDER is mainly suitable for slow spinning rates ($\nu_{\rm R} \approx$ 5 kHz), which are not sufficient to cancel the large CSA of 13 C nuclei at high-field spectrometers. In ref. 12, the 2D ¹⁴N-edited ¹H-¹³C CP-HETCOR spectrum was obtained from a 2D version of the 3D ¹H-¹³C-¹⁴N previous experiment that was improved by using a more robust heteronuclear dipolar recoupling¹⁴ and ¹H homonuclear dipolar decoupling.¹⁵ Nonetheless, as stated before, the ¹³C-¹⁴N-¹³C HMQC filter transfer remains only $\approx 5\%$ efficient and the ¹⁴N-edited ¹H-¹³C spectrum lasted 340 min at 18.8 T for ¹³C-labeled histidine. Such a performance is not sufficient to expect 2D spectra in a reasonable amount of time for non-enriched samples. The weak sensitivity of this HMOC-filter experiment is related to the use of the two ¹⁴N hard-pulses (Fig. 1a + b + c), which are too weak to irradiate correctly all atoms due to the large frequency spread (on the order of a few MHz) of powder pattern. Recently, Z. Gan managed to acquire

^a UCCS (CNRS-8181), University of Lille, Fr-59652 Villeneuve d'Ascq, France. E-mail: jean-paul.amoureux@univ-lille1.fr; Fax: 33 320436814; Tel: 33 320434143

^b State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China

^c Graduate School of the Chinese Academy of Sciences, Beijing, P. R. China

[†] Electronic supplementary information (ESI) available: Fig. 3: L-glutamine. (a) Molecular structure with atom labelling matching IUPAC recommendations.²¹ (b, c) CP-HETCOR spectra with: (b) all (S₀) or (c) ¹⁴N-edited (S₀ - S₁) ¹H-¹³C cross-peaks. *PMLG*^{xx}_{mm} decoupling scheme was applied during t_1 with $\nu_{1-1H} = 99$ kHz and $\tau_p = 1.4 \ \mu s$. ¹H axis has been rescaled. See DOI: 10.1039/b816362f

Fig. 1 Pulse sequences for the ¹H–¹³C heteronuclear correlation NMR experiments implementing ¹⁴N-editing *via* dipolar driven *D*-HMQC sequence (a + b + c) or adiabatic ¹⁴N change of states (a + b + d). The usual ¹H–¹³C CP-HETCOR spectrum is obtained with no ¹⁴N rf irradiation (a + b; S₀). In order to enhance ¹H resolution in the indirect dimension, homonuclear *PMLG*^{xx}_{mm} decoupling sequence has been used during t_1 .¹⁸ Recoupling of ¹³C–¹⁴N dipolar interactions is achieved by SFAM₁ irradiations applied on ¹³C nuclei.^{14,19} The phase cycling consists in varying the phase of the first ¹H $\pi/2$ pulse from + y to -y, while the receiver phase is changed from + x to -x concurrently. The phases of CP irradiations, SFAM₁ recoupling and ¹³C π pulse are + x, while the phase of *PMLG*^{xx}_{mm} is given in ref. 18.

first-order ¹⁴N quadrupolar wide-line spectra with ¹³C detection under MAS using one strong pulse on ¹⁴N.¹⁶ In this experiment, the pair of ¹⁴N short pulses of the HMQC sequence is replaced by a single pulse, which partly prevents the ¹³C–¹⁴N dipolar refocusing. The first-order ¹⁴N quadrupolar spectra are acquired by plotting, in a REAPDOR fashion,¹⁷ the difference of ¹³C signal intensities obtained with and without the ¹⁴N pulse. The whole spectra can only be recorded point by point by varying the frequency offset of the ¹⁴N pulse. We use here this pulse to detect carbons that are close to nitrogen atoms (Fig. 1a + b + d). In this case, the ¹⁴N pulse offset can be fixed. For optimal sensitivity, this offset should be in the ¹⁴N spectrum center, but its value is not critical (Fig. 1c in ref. 16). Furthermore, including a t_1 evolution period of ¹H coherences allows identifying protons coupled to the selected ¹³C nuclei. According to Gan's communication, a ¹⁴N pulse longer than one rotor period can generate a ν_R modulation of ¹⁴N signal.¹⁶ For ¹⁴N edition, we verified experimentally that the ¹⁴N pulse length does not affect much efficiency.

The 2D spectrum of Fig. 2d was acquired with a pulse duration of one rotor period, but similar results were obtained for other multiples of the rotor period. The ¹⁴N rf amplitude is the most significant parameter of the experiment as it alters the adiabaticity factor, $\nu_{1-14N}/(\nu_R C_Q)^{1/2}$, of this pulse.¹⁶ Its value must be strong enough to introduce significant spin state changes during the very brief level-crossing related to the MAS modulation of the first-order quadrupolar coupling. A saturation occurs for very large rf-fields, but the value of optimal ¹⁴N rf amplitude exceeds most of the time the probe specifications.¹⁶ Therefore, there is no parameter to optimize for the ¹⁴N pulse, as its amplitude has only to be fixed to its maximum accessible value, 50 kHz for our probe. Two ¹H–¹³C 2D experiments must be performed: one with the ¹⁴N irradiation (Fig. 1a + b + d: S_1) and the second without (Fig. 1a + b: S₀). S₀ produces a classical ¹H-¹³C dipolar HETCOR spectrum and $S_0 - S_1$ the ¹⁴N edited one. It should be noted

Fig. 2 L-Histidine-HCl·H₂O. (a) Molecular structure with atom labelling matching IUPAC recommendations.²¹ (b) 2D ¹H-¹⁴N *D*-HMQC spectrum.¹¹ *PMLG*^{xxx}_{nm} decoupling scheme¹⁸ was applied during t_2 with $\nu_{1-1H} = 99$ kHz and $\tau_p = 1.4 \ \mu s$. ¹H axis has been rescaled. A SAM₄¹⁵ decoupling with $\nu_{1-1H-peak} = 86$ kHz was sent on protons during t_1 to enhance the ¹⁴N resolution. $B_0 = 18.8 \ T$, $\nu_R = 20 \ kHz$, $\nu_{1-14N} = 44 \ kHz$. The experimental time has been of 5 min. (c, d) CP-HETCOR spectra with: (c) all (S₀) or (d) ¹⁴N-edited (S₀ - S₁) ¹H-¹³C cross-peaks. *PMLG*^{xx}_{mm} decoupling scheme was applied during t_1 with $\nu_{1-1H} = 99 \ kHz$ and $\tau_p = 1.4 \ \mu s$. ¹H axis has been rescaled. Spectra are the result of averaging 112 transients for each of 120 t_1 increments with $\Delta t_1 = 70 \ \mu s$, with a recycle time of 2 s. The total experimental time for the two spectra has been of 15 h (112 × 120 × 2 × 2 s). The SFAM₁ scheme was used for ¹³C-¹⁴N recoupling with $\tau_{rec} = 888 \ \mu s$, $\nu_{1-13C}^{peak} = 41 \ kHz$ and $\Delta \nu_{0-13C} = 20 \ kHz$. ¹H-¹³C CP-MAS: contact time = 2 ms, $\nu_{1-13C} = 54 \ kHz$, the power of ¹H is optimized with tangent-ramped shape. $B_0 = 9.4 \ T$, $\nu_R = 13.51 \ kHz$, $\nu_{1-14N} = 50 \ kHz$. ¹H decoupling: $\nu_{1-1H} = 86 \ kHz$.

that this experiment does not require a perfectly adjusted magic angle or a perfectly stabilized spinning speed, as with previous ¹³C-¹⁴N⁹ and ¹H-¹⁴N¹⁰ *D*-HMQC experiments. Indeed, the ¹⁴N edition does not involve heteronuclear polarization transfer, the efficiency of which is generally weak, but relies on the incomplete refocusing of the ¹³C-¹⁴N dipolar couplings. The ¹H-¹³C spectra have been recorded at 9.4 T with a Bruker AVANCE-II console, and a 4 mm rotor. During t_1 , we have used the $PMLG_{mm}^{x\bar{x}}$ sequence, which performs well at $\nu_{\rm R} = 13$ kHz to achieve a ¹H high-resolution spectrum,¹⁸ with an rf amplitude of 99 kHz. The ¹³C-¹⁴N dipolar recoupling sequence must be sent on a spin-1/2 nucleus,¹⁴ and thus on the ¹³C channel in this experiment. We have used the simultaneous frequency and amplitude modulation (SFAM₁) recoupling sequence, which is one of the most efficient and robust heteronuclear recoupling method.¹⁴ For SFAM₁, the carrier frequency, $\Delta \nu_{0-13C}(t)$, and the amplitude, $\nu_{1-13C}(t)$, of the rf field are modulated co-sinusoidally and sinusoidally, respectively, with a frequency equal to $\nu_{\rm R}$.^{14,19} SFAM₁ reintroduces both heteronuclear dipolar coupling and CSA. The two dipolar recoupling periods must be rotor-synchronized (see Fig. 1). The spin-echo segment in the middle of the sequence refocuses the ¹³C CSA interaction. For comparison with the two previous experiments,^{11,12} we have used histidine HCl-H₂O, which has three different nitrogen sites all covalently bonded to at least one ¹H and one ¹³C. The ammonium nitrogen is bonded to three protons (H^N) and one carbon (C^{α}) , while N^{π} and N^{τ} nitrogens of imidazole ring are bonded to one proton and two carbons: $(H^{\pi}, C^2/C^4)$, and $(H^{\tau}, C^2/C^5)$, respectively (Fig. 2a). We have quantified the efficiency of the ¹³C⁻¹⁴N dephasing process related to this pulse. Due to the moderate ¹⁴N quadrupole interactions ($C_{\rm O} \approx 1.1$ MHz), we observed a large efficiency, $(S_0 - S_1)/S_0$, which was equal to 0.80 (C²), 0.40 (C⁴), 0.60 (C⁵), and 0.56 (C^{α}), for the four carbons that are connected to a nitrogen atom. The very large efficiency for C² may be related to the fact this atom is connected to two nitrogen atoms. The sensitivity of the present experiment is *ca*. 4-5 times larger than with the previous¹² D-HMQC method. Long adiabatic transfers are much less sensitive to the frequency offset than short hard pulses and this sensitivity gain would thus increase with C_Q values, provided the ¹⁴N rf field is sufficient. Moreover, it must be noted that we presently obtained both normal (S_0 in Fig. 2c) and ¹⁴N-edited $(S_0 - S_1 \text{ in Fig. 2d})$ 2D spectra instead of only the ¹⁴N-edited one with the method described in ref. 12. $^{1}H^{-13}C$ spectra shown in Fig. 2c and d, have been recorded with a long CP contact time to enhance the S/N ratio, and therefore they do not display any selectivity with respect to protons. This selectivity can be obtained with shorter CP contact times, at the expense of experimental time. It is worth to mention that when we ran the experiment on a fully ¹³C enriched histidine. HCl·H₂O sample, S/N ratio was not proportional to the spin abundance, as ¹³C-¹³C couplings broadened peaks and affected SFAM₁ dynamics. This problem could have been partly overcome by replacing SFAM₁ by SFAM₂, which is less sensitive to homonuclear dipolar interactions.¹⁴ We have also recorded the complementary ¹H-¹⁴N *D*-HMQC spectrum of this sample. We have used a high-field spectrometer (18.8 T) and a smooth amplitude modulated (SAM₄)¹⁵ homo- and

hetero-nuclear decoupling on the proton channel during t_1 , which lead to a very good resolution along ¹⁴N (Fig. 2b). The three 2D high-resolution spectra allow to assign the resolved ¹H, ¹³C and ¹⁴N NMR peaks of histidine-HCl·H₂O. In particular, the assignment of ¹H resonances totally agrees with the one performed from high-resolution 2D ¹H doublequantum spectrum.²⁰ It must be reminded that the three spectra have been recorded: (i) with an isotopically unmodified sample, (ii) on a moderate field (9.4 T) spectrometer for ${}^{1}H{-}{}^{13}C$ spectra. and (iii) in a reasonable time (15 hrs altogether). We have also recorded the ¹⁴N-edited ¹H-¹³C spectrum of another isotopically unmodified amino acid, L-glutamine, within an experimental time of 25 h on a 9.4 T spectrometer (see ESI[†]). We believe that this new method can be extended to larger biomolecules, especially by using high-field spectrometers to enhance the ¹H and ¹³C resolution. It can also be extended by performing another experiment with a ¹⁴N off-resonance irradiation of ca. 1.5 MHz. This second experiment will provide ¹⁴N-edited ¹H-¹³C CP-HETCOR spectra, where only appear signal of carbon atoms close to 14 N nuclei submitted to large C_0 values.¹⁶

Authors are grateful for funding provided by Region Nord/ Pas de Calais, Europe (FEDER), CNRS, French Minister of Science, FR-3050, USTL, ENSCL, Bruker BIOSPIN, and ANR contract No. NT05-2-41632. They would also like to thank Dr Z. Gan for helpful discussions.

Notes and references

- O. V. Andronesi, S. Becker, K. Seidel, H. Hesie, H. S. Young and M. Baldus, J. Am. Chem. Soc., 2005, 127, 12965–12974.
- 2 D. H. Zhou, G. Shah, M. Cormos, C. Mullen, D. Sandoz and C. M. Rienstra, J. Am. Chem. Soc., 2007, 129, 11791–11801.
- 3 G. Jeschke and M. Jansen, Angew. Chem., Int. Ed., 1998, 37, 1282–1283.
- 4 A. K. Khitrin and B. M. Fung, J. Chem. Phys., 1999, 111, 8963-8969.
- 5 T. Giavani, H. Bildsoe, J. Skibsted and H. J. Jakobsen, J. Phys. Chem. B, 2002, 106, 3026–3032.
- 6 R. Tycko and S. J. Opella, J. Am. Chem. Soc., 1986, 108, 3531–3532.
- 7 Z. Gan, J. Am. Chem. Soc., 2006, 128, 6040-6041.
- 8 S. Cavadini, A. Lupulescu, S. Antonijevic and G. Bodenhausen, J. Am. Chem. Soc., 2006, 128, 7706–7707.
- 9 Z. Gan, J. Magn. Reson., 2007, 184, 39-43.
- 10 Z. Gan, J. P. Amoureux and J. Trebosc, *Chem. Phys. Lett.*, 2007, 435, 163–169.
- 11 R. Siegel, J. Trebosc, J. P. Amoureux and Z. Gan, J. Magn. Reson., 2008, 193, 321–325.
- 12 J. P. Amoureux, J. Trébosc, B. Hu, N. Halpern-Manners and S. Antonijevic, J. Magn. Reson., 2008, 194, 317–320.
- 13 K. Schmidt-Rohr and J.-D. Mao, Chem. Phys. Lett., 2002, 359, 403-411.
- 14 B. Hu, J. Trebosc and J. P. Amoureux, J. Magn. Reson., 2008, 192, 112–122.
- 15 J. P. Amoureux, B. Hu and J. Trébosc, J. Magn. Reson., 2008, 193, 305–307.
- 16 Z. Gan, Chem. Commun., 2008, 868-870.
- 17 Y. Ba, H. M. Kao, C. P. Grey, L. Chopin and T. Gullion, J. Magn. Reson., 1998, 133, 104–114.
- 18 M. Leskes, P. K. Madhu and S. Vega, Chem. Phys. Lett., 2007, 447, 370–374.
- 19 R. Fu, S. A. Smith and G. Bodenhausen, *Chem. Phys. Lett.*, 1997, 272, 361–369.
- 20 P. K. Madhu, E. Vinogradov and S. Vega, *Chem. Phys. Lett.*, 2004, 394, 423–428.
- 21 IUPAC-IUB Joint Commission on biochemical nomenclature, Pure Appl. Chem., 1984, 56, 595–624.